
Improving the reliability of commodity operating systemsNOOKS
http://www.cs.washington.edu/homes/mikesw/nooks

Isolation
Prevent extensions from causing the
 operating system to crash

Recovery
Restart crashed extensions automatically

Efficiency
Impose a minimum performance penalty

Backward Compatibility
Support existing extensions with no
 code changes
Integrate into existing operating systems
 with few changes

Goals
Best effort, but support the rest
Don’t try to prevent every fault
Don’t try to support every extension

Design for fault resistence,
 not fault tolerance
We are interested in reliability, not
 security.

Principles
Reliability is the critical problem
 for commodity operating
 systems
Linux, Windows XP ubiquitous in data
 center,home, office, and appliances.

Existing reliability solutions
 have not transferred
Require rewrite of OS kernel and all
 extensions

Problem

Mike Swift, Steve Martin, Doug Buxton, Leo
Shum, Mirco Stern

Hank Levy, Brian Bershad

Experience

Architecture

Implementation
Linux 2.4.10
Interposition through module load
Memory isolation with page tables
Fault detection with exception handlers

Experience
Isolated several kernel components

Network interface device drivers
VFAT File system
KHTTP Web server

Found bugs in extensions during development
3c90x driver overwrites memory after freeing
KHTTPD web server double-release kernel socket

Lessons learned
What makes isolation easier?

Enforce data hiding
Enforce regular calling conventions
Procedural, not macro, interfaces
Kernel allocated objects
No parameter shadowing

What extensions are easiest/cheapest to isolate?
Device drivers: simplest parameters

Application Daemon

Device Device Device

Driver Driver
Driver
Driver

Linux Kernel

Nooks Isolation Manager

Application
Applications

Daemon
Daemons

Kernel
Service

Kernel
Service

Driver

Nooks
Recovery Agent

Kernel
Service

NOOKS Isolation Manager

Recovery
Manager

Task Unwind

Hardware
Release
Kernel

Release
Unload/
Reload

Domain
Manager

Isolated
Procedure

Call

Memory
Manager

Object Manager

Object
Mapping

Object
Update

Isolate device extensions with in a virtual memory protection domain
Use interposition to add parameter checks and protection domain change
 to kernel-extension interface
Fault model
Crashing faults: causes OS to stop functioning
Functional faults: extension doesn’t perform correctly
Goal: prevent or recover from a large percentage of crashing faults

High Level Architecture

Wrappers
Interposed functions between kernel and extension
Responsible for validating parameters to kernel and data transfer between protection domains

Domain Manager
Manages memory isolation with separate page table per protection domain
Transfers control between domains by changing processor page table and swapping stack

Resource Manager
Maintains table of kernel objects in use by extensions
Maintains shadow copies of writeable objects for extensions
Maintains table of extension functions callable from kernel

Error handling
Errors from extension occur at:

Memory instructions: triggers restart of extension (can’t continue)
Calls to/from kernel: reflected as error codes returned to extension or kernel

Recovery Manager
Unwinds executing tasks
Releases kernel resources (from resource manager)
Unregisters extension functions from kernel
Reloads extension
Releases physical resources

Architecture Details

123Extension functions wrapped

.h 36

.c 22

Kernel source files changed

257Kernel Functions Wrapped

8271Total

840Miscellaneous

5240Wrappers

811Resource Management

1052Domain Management

328Recovery

Code Statistics

