
Transparent Recovery for Kernel Extensions

Shadow DriversShadow Drivers
http://www.cs.washington.edu/homes/mikesw/nooks

Transparent
Shouldn’t require modifying kernel or
 drivers
Shouldn’t require modifying applicat-
 ions or user-mode libraries

Shared
Small amount of mechanism should
 apply to large number of extensions

Goals
Computers crash too often.

We can improve the reliability of
 computer systems by improving the
 reliability of the operating system
Most OS crashes due to bugs in
 extensions

OS needs to provide
Isolation for extensions
see SOSP’03 paper

Transparent recovery after a fault

Problem

Mike Swift, Muthukaruppan Annamali
Hank Levy, Brian Bershad

Experience

Architecture

Implementation
Linux 2.4.18 + Nooks for isolation
Interpose beam splitter on module load
Fault detection with exception handlers

Experience
Shadowed several driver classes

Network interface device drivers
Sound card driver

Improved recovery from Nooks
Network interface from 12 seconds to 0.5 seconds
Sound card from application abort to 0.5 second
silence

Related Work
•Recursive & Micro-reboots [Candea & Fox 01]

•Recover systems by rebooting successively
larger portions

•Process-pairs [Bartlett 81]

•Transfer control to second copy of a process
after failure of primary

•Recovery Blocks [Randell 75]

•Provide second, slim, implementation of function
to be called when correctness check fails

Isolate extensions with Nooks
 lightweight kernel protection domains

Detect faults using exception handlers
 and wrappers on extension interfaces

Recover with Shadow Drivers

Hot-backup of a kernel extension to
 take over when the real one crashes

Single code base shadows entire
 class of real extensions - e.g. all
 sound drivers or all network drivers

Shadow driver replays requests to
 extension to restore its state

Solution

Implements same interfaces as real
 drivers: e.g. PCI, IRQ, Timer,
 Network, Character
Normal mode operation:

Record OS resources used
Log request data for recovery

Failure mode operation:
Reply kernel/applications with
 logged information
Log data written

Recovery mode operation:
 Respond to kernel requests from
 driver with saved OS resources
Plug extension interfaces back
 into kernel interfaces
Replay logged requests to restore
 driver to pre-crash state

Shadow Driver Details

Beam Splitter Shadow Driver

Interposed on communication
 interfaces between driver and kernel
 at load time and dynamically during
 driver registration
Normal Mode operation: Copies calls
 from driver/kernel to shadow driver
Failure/Recovery Mode Operation:
 Redirect calls from driver/kernel to
 shadow during mask failure

Beam Splitter Details

Sound driver crashes while
 playing music

Today: machine panics, all work
 is lost
Goal: OS recovers sound driver
 while MP3 player continues
 unaware. Music may drop out for
 a short period

Example

Best effort, but support the rest
Don’t try to prevent every fault
Don’t try to support every extension

Design for fault resistance,
 not fault tolerance
We don’t need to prevent every crash
 to be useful

Principles

