Shadow Drivers

Mike Swift, Muthukaruppan Annamali
Hank Levy, Brian Bershad

~Problem
=Computers crash too often.

=We can improve the reliability of
computer systems by improving the
reliability of the operating system
=Most OS crashes due to bugs in
extensions
=0S needs to provide
=|solation for extensions
=see SOSP’03 paper
=Transparent recovery after a fault

Transparent Recovery for Kernel Extensions

http://www.cs.washi

ngton.edu/homes/mikesw/nooks

~Example

=Sound driver crashes while
playing music

=Today: machine panics, all work
is lost

=Goal: OS recovers sound driver
while MP3 player continues
unaware. Music may drop out for
a short period

~Goals

=Transparent
=Shouldn’t require modifying kernel or
drivers
=Shouldn’t require modifying applicat-
ions or user-mode libraries

=Shared

=Small amount of mechanism should
apply to large number of extensions

II Applications

~Principles
=Best effort, but support the rest

=Don’t try to prevent every fault

~Architecture
r Solution

=|solate extensions with Nooks
lightweight kernel protection domains
=Detect faults using exception handlers
and wrappers on extension interfaces
=Recover with Shadow Drivers
=Hot-backup of a kernel extension to
take over when the real one crashes
=Single code base shadows entire
class of real extensions - e.g. all
sound drivers or all network drivers
=Shadow driver replays requests to
extension to restore its state

rBeam Splitter Details —

=Interposed on communication
interfaces between driver and kernel
at load time and dynamically during
driver registration

=Normal Mode operation: Copies calls
from driver/kernel to shadow driver

=Failure/Recovery Mode Operation:
Redirect calls from driver/kernel to
shadow during mask failure

Recovery
Service

‘ 05 Kernel

=Don’t try to support every extension

=Design for fault resistance,

Driver Beam-splitter Service Beam-splitter nOt faUIt tOIerance
N6okS I: Shadow Nooks Shadow ‘ =\We don’t need to prevent every crash
Isolation E driver Isolation Service to be useful
Driver | |5 Ky Kermel Service
|| Service
orer -Shadow Driver Details -
=Implements same interfaces as real
drivers: e.g. PCI, IRQ, Timer,
: Network, Character
=Normal mode operation:
=Record OS resources used
" =Log request data for recovery
: =Failure mode operation:
v A | =Reply kernel/applications with
y
kemel | 1RQ rel logged |nforlmat|on
PCI =Log data written
\ I{ Bieras =Recovery mode operation:
Vo] I — = Respond to kernel requests from
' inertace | g oo | nterace driver with saved OS resources
=Plug extension interfaces back
 Timer into kernel interfaces
interface
=Replay logged requests to restore
Sound Device ‘ Recovery driver to pre-crash state
Interface management

Beam Splitter

Shadow Driver

~EXxperience

Implementation
Linux 2.4.18 + Nooks for isolation
Interpose beam splitter on module load
Fault detection with exception handlers
Experience
Shadowed several driver classes
Network interface device drivers
Sound card driver
Improved recovery from Nooks

Network interface from 12 seconds to 0.5 seconds
Sound card from application abort to 0.5 second
silence

Related Work

*Recursive & Micro-reboots [Candea & Fox 01]
*Recover systems by rebooting successively
larger portions

*Process-pairs [Bartlett 81]

*Transfer control to second copy of a process
after failure of primary

*Recovery Blocks [Randell 75]

*Provide second, slim, implementation of function
to be called when correctness check fails

