
Transparent Recovery for Kernel Extensions

Shadow DriversShadow Drivers
http://www.cs.washington.edu/homes/mikesw/nooks

Transparent
Shouldn’t require modifying kernel or
 drivers
Shouldn’t require modifying applicat-
 ions or user-mode libraries

Shared
Small amount of mechanism should
 apply to large number of extensions

Goals
Computers crash too often.

We can improve the reliability of
 computer systems by improving the
 reliability of the operating system
Most OS crashes due to bugs in
 extensions

OS needs to provide
Isolation for extensions
see SOSP’03 paper

Transparent recovery after a fault

Problem

Mike Swift, Muthukaruppan Annamali
Hank Levy, Brian Bershad

Experience

Architecture

Implementation
Linux 2.4.18 + Nooks for isolation
Interpose beam splitter on module load
Fault detection with exception handlers

Experience
Shadowed several driver classes

Network interface device drivers
Sound card driver

Improved recovery from Nooks
Network interface from 12 seconds to 0.5 seconds
Sound card from application abort to 0.5 second
silence

Related Work
•Recursive & Micro-reboots [Candea & Fox 01]

•Recover systems by rebooting successively
larger portions

•Process-pairs [Bartlett 81]

•Transfer control to second copy of a process
after failure of primary

•Recovery Blocks [Randell 75]

•Provide second, slim, implementation of function
to be called when correctness check fails

Isolate extensions with Nooks
 lightweight kernel protection domains

Detect faults using exception handlers
 and wrappers on extension interfaces

Recover with Shadow Drivers

Hot-backup of a kernel extension to
 take over when the real one crashes

Single code base shadows entire
 class of real extensions - e.g. all
 sound drivers or all network drivers

Shadow driver replays requests to
 extension to restore its state

Solution

Implements same interfaces as real
 drivers: e.g. PCI, IRQ, Timer,
 Network, Character
Normal mode operation:

Record OS resources used
Log request data for recovery

Failure mode operation:
Reply kernel/applications with
 logged information
Log data written

Recovery mode operation:
 Respond to kernel requests from
 driver with saved OS resources
Plug extension interfaces back
 into kernel interfaces
Replay logged requests to restore
 driver to pre-crash state

Shadow Driver Details

Beam Splitter Shadow Driver

Interposed on communication
 interfaces between driver and kernel
 at load time and dynamically during
 driver registration
Normal Mode operation: Copies calls
 from driver/kernel to shadow driver
Failure/Recovery Mode Operation:
 Redirect calls from driver/kernel to
 shadow during mask failure

Beam Splitter Details

Sound driver crashes while
 playing music

Today: machine panics, all work
 is lost
Goal: OS recovers sound driver
 while MP3 player continues
 unaware. Music may drop out for
 a short period

Example

Best effort, but support the rest
Don’t try to prevent every fault
Don’t try to support every extension

Design for fault resistance,
 not fault tolerance
We don’t need to prevent every crash
 to be useful

Principles

