
Nooks: An Architecture for Reliable Device Drivers ∗

Michael M. Swift, Steven Martin, Henry M. Levy, and Susan J. Eggers

Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195, USA

{mikesw, stevaroo, levy, eggers} @cs.washington.edu

1 Introduction

With the enormous growth in processor performance
over the last decade, it is clear that reliability, rather
than performance, is now the greatest challenge for
computer systems research. This is particularly true in
the context of Internet services that require 24x7 op-
eration and home computers with no professional ad-
ministration. While operating system products have
matured and become more reliable, they are still the
source of a significant number of failures. Furthermore,
recent studies show that device drivers are frequently
responsible for operating system failures. For exam-
ple, a study at Stanford University found that Linux
drivers have 3 to 7 times the bug frequency as the rest
of the OS [4]. An analysis of product support calls for
Windows 2000 showed that device drivers accounted
for 27% of crashes, compared to 2% for the kernel it-
self [16].

The reasons for the high rate of driver failures are
four-fold. First, drivers are typically written by de-
vice manufacturers rather than by operating system
developers with extensive kernel programming experi-
ence. Second, drivers are frequently created by copy-
ing and editing code templates from existing drivers,
often without complete understanding, leading to sub-
tle bugs. Third, the kernel programming environment
has many unenforced or poorly-documented conven-
tions about synchronization and memory access, mak-
ing kernel-mode programming and debugging challeng-
ing, at best. Finally, driver programming often re-
quires understanding the operation of complex asyn-
chronous devices, their control protocols, and their fail-
ure modes. As the number of new devices available
increases to support new applications, such as cam-

∗This work was supported in part by the National Science
Foundation (grants ITR-0085670 and CCR-0121341).

eras, digital video, etc., so does the number of drivers
required and the number of (relatively unskilled) pro-
grammers responsible for creating them.

Device drivers can be viewed as a type of kernel
extension, added after the fact. Commercial operating
systems are typically extended by loading unsafe object
code and linking it directly with the kernel. There have
been many attempts to solve the general problem of
safely extending the kernel [6, 2, 20], but they have
demanded that programmers change the way in which
they write code or the way in which operating systems
are structured. Such approaches are unworkable for
device drivers, which are the most common operating
system extensions and represent a huge investment in
development time; hence none of these approaches have
been successful in a commercial system.

System availability depends not just on fault isola-
tion, but also on quick recovery from faults. There-
fore, the operating system must not just isolate faulty
device drivers, but also allow them to quickly resume
service, either after restarting or after recovering pre-
vious actions in progress. Recovery is also increasingly
important due to the rising problem of hardware fail-
ures [16], which depends on isolating the effects of a
fault and quickly recovering to a pre-fault state.

In the future, it is clear that improving operating
system reliability depends on improving device driver
reliability, because the kernel is no longer the primary
source of bugs (or kernel-mode code!). In addition, as
software matures and device integration levels shrink,
hardware failures will become a greater problem. As
a result, operating systems need to provide support
for (1) tolerating and recovering from faulty drivers,
and (2) tolerating and recovering from faulty hardware.
The Nooks project is examining mechanisms and ar-
chitectures to meet these goals.

2 Approaches

Many approaches have been proposed to safely execute
user- or kernel-mode code, including device drivers.
One difference between safely executing drivers and
safely executing general kernel extensions is that one
can assume that most device drivers are trustworthy:
the problem is one of safety and not security, and abso-
lute safety may not even be needed. Table 1 shows five
key hardware and software techniques that can isolate
driver code from the OS kernel. Each of these tech-
niques has benefits and drawbacks, and may be ap-
propriate in certain situations. Table 1 also shows the
systems that used each technique.

Table 2 shows the relative advantages and disad-
vantages of each approach along the axes of software
engineering, performance for large and small volumes
of data, and ability to isolate memory corruption and
deadlock errors.

In more detail:

1. Kernel wrapping surrounds all calls into and out of
device drivers with special code, allowing resources
to be tracked and pre- and post-conditions to be
verified. Kernel wrapping can ensure that mem-
ory not owned by the driver is not freed, and that
interrupts are enabled before blocking. However,
kernel wrapping cannot prevent a driver from acci-
dentally corrupting the operating system by writ-
ing through a stray pointer.

2. Virtual memory protection can be used to isolate
data corruption problems, which are one of the
most common driver faults, but can’t catch dead-
lock errors, such as those caused by improper dis-
abling of interrupts.

3. Lowering the privilege level of drivers (e.g., to su-
pervisor or user level) prevents them from exe-
cuting privileged instructions, accessing privileged
address space, and corrupting the kernel. How-
ever, there is a large performance penalty, because
calls into drivers require an additional trap and re-
turn to change privilege level.

4. Software fault isolation (SFI) [23] provides many
of the benefits of a privilege level change, but is
difficult to implement when the range of addresses
accessible are not contiguous. In contrast to low-
ering the privilege level, it is very cheap to call
into and out of SFI code, but SFI code executes
more slowly. In addition, SFI does not easily sup-
port recovery in the form of copy-on-write, which
hardware memory protection does support.

5. Finally, safe languages such as Java [7] and
Modula-3 [17] can prevent drivers from uncon-
trolled access to kernel memory. However, using a
safe language requires rewriting drivers and may
introduce significant overhead when safely copying
data in and out of the driver. There is also not as
of yet a good mechanism for accessing a device in
a type-safe fashion.

As a result, there is no single approach that is appli-
cable for all device drivers. High performance devices,
such as network and disk interfaces, require minimum
overhead for large quantities of data to match the speed
of the device and must run in the kernel. Low perfor-
mance devices, though, such as keyboards, mice, and
serial devices, do not always require the performance
benefit of running in the kernel with no protection. The
reliability needs of computer installations also vary: a
bank may be willing to suffer a significant performance
decrease in order to improve reliability, while a game
player would risk crashing periodically to improve the
realism of the game. Thus, it is important for the op-
erating system to support a variety of techniques, so
that driver writers and system installers can choose
the most appropriate for them.

Beyond fault isolation, fault recovery is also in-
creasingly important. Some techniques, such as mem-
ory protection, lend themselves toward automatic fault
recovery. For example, Discount Checking [13] and
Lightweight Recoverable Virtual Memory [19] use copy-
on-write to maintain a shadow copy of all memory ac-
cessed by an application, allowing automatic recovery
when a fault is detected. Other techniques, like safe
languages and SFI, provide little support for recovery.

3 Nooks Architecture

We propose that operating systems should support exe-
cuting drivers in a fault-isolating and recoverable envi-
ronment so that a faulty driver cannot prevent the rest
of the OS from functioning. In addition, the operat-
ing system should offer multiple levels of isolation and
performance to reflect different driver needs. Our goal
is to provide these features with only an incremental
change to the operating system and device driver ar-
chitecture, to maximize compatibility with the existing
code base.

Figure 1 shows our proposed architecture, called
Nooks. A nook is a protected environment for driver
execution. Not all devices execute within a nook, as
illustrated by the SCSI device driver in the figure.
In addition, multiple drivers may execute within the
same nook for performance reasons, as illustrated by

2

Table 1. Kernel extension safety approaches

Name Description Where Used
Kernel Wrapping Verify all parameters on calls between the kernel

and device drivers
Microsoft Driver
Verifier [15]

Hardware Memory Pro-
tection

Prevent device drivers from writing to kernel mem-
ory

Palladium [3],
Shinagawa [21]

Privilege Level Change Prevent device drivers from executing privileged
instructions and/or emulate privileged instruc-
tions

L4 [12], Exoker-
nel [6]

Software Fault Isolation Inject code into device drivers to ensure that ad-
dresses and instructions are safe

Vino [20]

Safe Languages Rely on the compiler/virtual machine to allow
only safe (non-faulting) drivers to be loaded

SPIN [2]

Table 2. Comparison of driver safety approaches

Kernel
Wrapping

Hardware
Memory
Protection

Privilege
Level
Change

Software
Fault Isola-
tion

Safe Lan-
guages

Requires rewriting driver No No No Maybe Yes
Easily supports recovery No Yes Yes No No
High performance for
small data volumes

Yes No No Yes Yes

High performance for
large data volumes

Yes Yes Yes No No

Isolates memory corrup-
tion

No Yes Yes Maybe Yes

Prevents most deadlocks Maybe No Yes Yes Yes

Operating System Kernel

Video Nook

Apache Web
Server

Navigator Web
Browser

Quake3D Video
Game

Ethernet Card Video Card
SCSI Controller

Card

Memory
Management

File System Networking

Nooks Kernel Runtime

Per-nook runtime

Nooks Kernel Runtime

Video Driver SCSI Driver

Network Nook

Ethernet Driver

TCP/IP Driver

Per-nook runtime

Figure 1. Nooks architecture diagram

the combination of the Ethernet and TCP/IP drivers
within the network nook. Nooks interpose between de-
vices and device drivers by forwarding interrupts and,
depending on the level of safety required, emulating
access to memory-mapped device registers. Nooks also
wrap calls from the operating system kernel into device
drivers and from device drivers into the kernel, allowing
the operating system to track resource usage and verify
data that is passed into and out of the kernel. Rather
than fully isolate device drivers in a separate address
space, all drivers execute in the kernel address space,
but within different protection domains. Thus, a device
driver may use pointers supplied by the kernel without
copying the data or translating addresses. However,
the Nooks architecture prevents device drivers from
writing to memory outside their protection domain,
limiting the damage of an errant memory access. Ini-
tially we use virtual memory protection and lowered
privilege levels for isolating and recovering faulty code,
but we plan to experiment with Software Fault Isola-
tion (SFI) as well.

The Nooks architecture minimizes the number of

3

crossings between the kernel protection domain and
device drivers by separating kernel resources into those
that must be shared from those that are only shared in-
cidentally. For example, the processor must be shared
among all drivers, so kernel intervention is required for
scheduling functions. However, other operating system
resources, such as wait queues and memory heaps, are
only shared for convenience. Nooks takes advantage of
these two classes of resources to improve performance
by duplicating the resources that are only incidentally
shared. Drivers may then directly access the resource
without crossing to the kernel’s protection domain. In
addition, some of the work that must be performed in
the kernel need not be performed synchronously, such
as delivering network packets. These operations can be
deferred until the driver has completed execution, and
then performed in a single batch.

Device drivers may require small changes to execute
within the Nooks architecture. In particular, oper-
ating system support routines that make kernel data
structures directly available to device drivers (such as
by returning a pointer to an kernel data structure
which the driver then updates) cannot be supported.
Instead, drivers must call wrapper routines that update
kernel data structures on their behalf. The Nooks
architecture will initially support two levels of recov-
ery: full restart, which unloads and restarts drivers,
and rollback, which uses recoverable virtual memory
to maintain a shadow copy of driver state, allowing it
to be recovered after a fault. Many device requests are
by their nature idempotent, such as sending or receiv-
ing a network packet or writing disk block, so in some
cases a failed operation can be retried safely.

4 Implementation

We implemented a prototype of the Nooks architec-
ture in the Linux kernel. The prototype runs on Linux
version 2.4.10, and we have experimented with isolating
network interface device drivers, including the 3Com
3c905 fast ethernet adapter and the Intel Pro/1000
gigabit ethernet adapter. The prototype follows the
architecture shown in Figure 1, and wraps all calls
into and out of device drivers to prevent write-sharing
of data and to verify parameters. We plan on using
hardware memory protection to isolate drivers, and we
therefore maintain a copy of the kernel pagetable for
drivers that only grants read access to kernel text and
data.

While our implementation does not execute drivers
in a separate protection domain, it does emulate the
cost of switching protection domains. First, to emulate
the cost of changing page tables, we flush the TLB on

all calls into or out of a driver. Second, to emulate
the cost of lowering the privilege level of a driver, we
execute a software trap and return both when entering
and leaving a driver as well as when the driver executes
a privileged operation, such as disabling interrupts.

Our prototype Nooks implementation wraps 147
calls made by device drivers into the Linux kernel, and
103 calls from the kernel into device drivers through
ten different interfaces. To ensure that drivers do not
call directly into kernel functions, we modified the ins-
mod program, which is responsible for binding symbols
in dynamically loaded kernel code, to bind symbols im-
ported by these drivers to the Nooks wrappers rather
than to the kernel functions.

The Linux operating system and the Intel IA-32 ar-
chitecture proved to be difficult choices for implement-
ing Nooks. First, Linux allows drivers to modify many
kernel data structures. For example, drivers typically
update a kernel queue when freeing network packets.
In addition, many kernel functions are implemented as
inline function calls. We converted several functions
to true procedure calls, which requires that drivers be
recompiled to execute within our prototype. The Intel
IA-32 architecture proved difficult because of its hard-
ware TLB miss handler. The architecture enforces a
page table layout that does not support multiple pro-
tections for the same page at the same privilege level.
As a result, we instead duplicated the kernel page table
and copied all updates from the kernel page table.

The Nooks wrapper code copies all parameters
passed from drivers into the kernel, and also verifies
that pointers reference data structures allocated to the
driver making the call. In addition, the wrapper layer
maintains a mapping between kernel data structures
and copies of the data structure used by the driver,
and ensures that the data structures are synchronized
by copying changes during calls into the driver or ker-
nel.

We emulate different levels of protection, ranging
from just wrapping calls to executing drivers at a lower
privilege level by controlling the cost of protection do-
main switches and privileged operations. We are there-
fore able to determine the impact of different protection
techniques on specific device drivers and workloads.

5 Performance

To test the performance of our prototype, we used the
Netperf benchmarking tool [9] to measure TCP band-
width and UDP request/response performance. The
bandwidth tests stream 32KB messages between two
machines, and the UDP tests send a 100 byte request
and receive a 200 byte response. Our experimental

4

611 600 630

TCP Stream

236 239 241

UDP RR

L
a

te
n

c
y

s

T
h

ro
u

g
h

p
u

t
M

b
/s

700 250

350 125

00

Linux

Nooks Network Performance

Nooks wrapping

Nooks unprivileged

Figure 2. Nooks Netperf performance com-
pared against unomdified Linux

platform was a pair of PCs with 1.7 GHz Pentium
4 processors, 1 GB of memory, and gigabit Ether-
net adapters, one of which ran drivers isolated with
Nooks. We tested Linux with the driver loaded as a
module, and Nooks with just wrapping and with full
protection, which entails both flushing the TLB and
executing a software trap on all calls into and out of
the driver and on privileged instructions. In all cases
we used the default values for the driver’s parameters.

The results are shown in Figure 2, and demonstrate
that isolating a driver using Nooks has a negligible
impact on network performance. Despite the addi-
tional overheads from flushing the TLB and executing
a trap, the bandwidth of TCP streams actually im-
proved, from 611 Mb/s to 630 Mb/s. We believe the
performance increase is due to the increased number of
packets received during each driver interrupt, which in-
creased from 7.1 to 8.6 packets per interrupt. The UDP
request/response test meeasures measures the round-
trip time across the network and through the network
stacks on the two machines. The latency increased
slightly, from 236 microseconds to 241 microseconds,
demonstrating the low overhead introduced by Nooks.

We measured the impact of isolating the network
driver on interrupt handling by measuring the number
of cycles spent handling interrupts from the network
interface. On Linux, the Intel PRO/1000 driver exe-
cutes in 20,800 cycles on average. With just wrapping,
handling an interrupt takes nearly twice as long, 37,200
cycles. Raising the privilege level and changing page
tables raises that cost to 47,800 cycles, about 15 mi-
croseconds longer than plain Linux. We also measured

the load incurred by processing the TCP tream. On
unmodified Linux, processing TCP required 17.6% of
the CPU, while running the driver isolated with both
wrapping and a lowered privilege level required 20.7%
of the CPU, an 18% increase.

Overall, these experiments demonstrate that on
modern processors the cost of isolating device drivers
is low. Furthermore, other architectures with faster
operating system operations, such as the Alpha [11] or
Itanium [5], could further reduce these overheads.

6 Related Work

Many projects have tackled the difficulty of writing de-
vice drivers. The Stanford study using the MC tool [4]
and Microsoft’s SLAM project [1] mechanically found
many bugs in device drivers, but did not automatically
fix those bugs. Microsoft’s Driver Verifier [15] wraps
operating system calls, but is meant as a debugging
tool only, and does not prevent memory corruption.
The Devil Project [14] aims to simplify the process of
writing device drivers by providing a domain-specific
language for specifying the interface between the de-
vice and the processor, which could be used as part
of Nooks to better isolate driver’s hardware access.
The WinDriver architecture [10] and Hunt’s user-mode
drivers [8] both allow device drivers to be run in user-
mode, but support a different API from the kernel
and don’t provide the performance option of execut-
ing in the kernel but with memory protection. Van
Maren [22] built a user-mode device interface for the
Fluke microkernel, but it was not applicable to conven-
tional operating systems. Finally, the Uniform Driver
Interface project (UDI) [18] provides a driver interface
to the kernel that prevents deadlock and allows for
memory isolation, but again requires that drivers be
completely rewritten.

7 Conclusion

Reliable services depend on a reliable operating sys-
tem. While the core operating system kernel code has
become reliable, device drivers have not kept pace. De-
vice drivers are by their very nature difficult to write
and even worse, are not written by experts at kernel
programming. Therefore, operating systems must as-
sist device driver writers by reducing the penalty of a
faulty driver. The Nooks architecture accomplishes
this goal by isolating drivers with a variety of tech-
niques, including kernel wrapping, virtual memory pro-
tection, privilege level lowering, and software fault iso-
lation, which are suited to many different environments

5

and driver types. Nooks does not require rewriting
drivers, and can support recovery from both software
and transient hardware errors using copy-on-write vir-
tual memory techniques to maintain a shadow copy of
uncorrupted memory. Executing drivers within a nook
isolate the two most common driver bugs, memory cor-
ruption and deadlock, leading to more reliable systems.
Finally, the Nooks architecture can achieve high per-
formance for large volumes of data using virtual mem-
ory remapping, while also maintaining performance for
low-bandwidth devices with software fault isolation.

References

[1] T. Ball and S. K. Rajamani. The SLAM project: De-
bugging system software via static analysis. In Proc.
29th POPL, Portland, OR, Jan. 2002.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,
M. E. Fiuczynski, D. Becker, C. Chambers, and S. Eg-
gers. Extensibility, safety and performance in the SPIN
operating system. In Proc. 15th SOSP, pages 267–284,
Copper Mountain, Colorado, Dec. 1995.

[3] T. Chiueh, G. Venkitachalam, and P. Pradhan. Inte-
grating segmentation and paging protection for safe,
efficient and transparent software extensions. In Proc.
17th SOSP, pages 140–153, Kiawah Island Resort,
South Carolina, Dec. 1999.

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. En-
gler. An empiracle study of operating system errors.
In Proc. 18th SOSP, Lake Louise, Alberta, Oct. 2001.

[5] I. Corporation. The IA-64 Architecture Software De-
veloper ’s Manual. Intel Corporation, Jan. 2000.

[6] D. R. Engler, M. F. Kaashoek, and J. O. Jr. Exokernel:
an operating system architecture for application-level
resource management. In Proc. 15th SOSP, pages 251–
266, Copper Mountain Resort, Colorado, Dec. 1995.

[7] J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

[8] G. Hunt. Creating user-mode device drivers with a
proxy. In Proc. 1997 USENIX Windows NT Workshop,
Seattle, WA, Aug. 1997.

[9] R. Jones. Netperf: A network performance, version
2.1, 1995. Available at http://www.netperf.org.

[10] Jungo. Windriver cross platform device driver develop-
ment environment. Technical report, Jungo Corpora-
tion, Feb. 2002. http://www.jungo.com/windriver.

html.
[11] R. E. Kessler. The Alpha 21264 microprocessor. IEEE

Micro, 19(2):24–36, March/April 1999.
[12] J. Liedtke. On µ-kernel construction. In Proc. 15th

SOSP, pages 237–250, Copper Mountain Resort, Col-
orado, Dec. 1995.

[13] D. E. Lowell and P. M. Chen. Discount checking:
Transparent, low-overhead recovery for general appli-
cations. Technical Report CSE-TR-410-99, University
of Michigan, Nov. 1998.

[14] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and
G. Muller. Devil: An IDL for hardware programming.
In Proc. 4th OSDI, pages 17–30, San Diego, CA, Oct.
2000.

[15] Microsoft. Windows XP device driver development kit.
Technical report, Microsoft Corporation, Oct. 2001.

[16] B. Murphy. Fault tolerance in this high avail-
bility world. Talk given at Stanford Uni-
versity and University of California at Berke-
ley. Available at http://research.microsoft.com/

users/bmurphy/FaultTolerance.htm, Oct. 2000.
[17] G. Nelson, editor. Systems Programming with Modula-

3. Prentice Hall, 1991.
[18] Project-UDI. Introduction to UDI version 1.0. Tech-

nical report, Project UDI, Aug. 1999. Available at
http://www.project-udi.org/Docs/pdf/UDI_tech_

white_paper.pdf.
[19] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.

Steere, and J. J. Kistler. Lightweight recoverable vir-
tual memory. In Proc. 14th SOSP, pages 146–160,
Asheville, North Carolina, Dec. 1993.

[20] M. I. Seltzer, Y. Endo, C. Small, and K. A. Smith.
Dealing with disaster: Surviving misbehaved kernel ex-
tensions. In Proc. 2nd OSDI, pages 213–227, Seattle,
Washington, Oct. 1996.

[21] T. Shinagawa, K. Kono, and T. Masuda. Exploiting
segmentation mechanism for protecting against mali-
cious mobile code. Technical Report 00-02, Dept. of
Information Science, University of Tokyo, May 2000.

[22] K. T. Van Maren. The fluke device driver frame-
work. Master’s thesis, Department of Computer Sci-
ence, University of Utah, Dec. 1999.

[23] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham. Efficient software-based fault isolation. In Proc.
14th SOSP, pages 203–216, Asheville, North Carolina,
Dec. 1993.

6

http://www.netperf.org
http://www.jungo.com/windriver.html
http://www.jungo.com/windriver.html
http://research.microsoft.com/users/bmurphy/Fault Tolerance.htm
http://research.microsoft.com/users/bmurphy/Fault Tolerance.htm
http://www.project-udi.org/Docs/pdf/UDI_tech_white_paper.pdf
http://www.project-udi.org/Docs/pdf/UDI_tech_white_paper.pdf

	Introduction
	Approaches
	Nooks Architecture
	Implementation
	Performance
	Related Work
	Conclusion

